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A deep unrolled neural network for real-time
MRI-guided brain intervention

Zhao He 1,2,3, Ya-Nan Zhu4, Yu Chen1,2,3, Yi Chen1,2,3, Yuchen He5, Yuhao Sun6,
Tao Wang6, Chengcheng Zhang 6, Bomin Sun 6, Fuhua Yan7,
Xiaoqun Zhang4,8, Qing-Fang Sun 6 , Guang-Zhong Yang 1,2,3 &
Yuan Feng 1,2,3,7

Accurate navigation and targeting are critical for neurological interventions
includingbiopsy anddeepbrain stimulation. Real-time imageguidance further
improves surgical planning and MRI is ideally suited for both pre- and intra-
operative imaging. However, balancing spatial and temporal resolution is a
major challenge for real-time interventional MRI (i-MRI). Here, we proposed a
deep unrolled neural network, dubbed as LSFP-Net, for real-time i-MRI
reconstruction. By integrating LSFP-Net and a custom-designed, MR-
compatible interventional device into a 3 T MRI scanner, a real-time MRI-gui-
ded brain intervention system is proposed. The performance of the system
was evaluated using phantom and cadaver studies. 2D/3D real-time i-MRI was
achieved with temporal resolutions of 80/732.8ms, latencies of 0.4/3.66 s
including data communication, processing and reconstruction time, and in-
plane spatial resolution of 1 × 1 mm2. The results demonstrated that the pro-
posed method enables real-time monitoring of the remote-controlled brain
intervention, and showed the potential to be readily integrated into diagnostic
scanners for image-guided neurosurgery.

Real-time guidance and visualization are crucial for robot-assisted
surgery, especially in neurosurgery, where accurate positioning and
delicate interventions are essential1,2. These include brain biopsy3,
ablation4, and electrode placement in Deep Brain Stimulation (DBS)5.
Computed tomography (CT) and ultrasound are commonly used for
navigation for robot-assisted neurosurgery, due to their fast imaging
capabilities. However, CT has ionizing radiation, and ultrasound can-
not provide enough resolution and tissue contrast for the brain.
Magnetic Resonance Imaging (MRI), devoid of ionizing radiation but
with superior soft-tissue contrast is ideal for brain interventional

imaging6,7. However, the relatively slow imaging speed poses a sig-
nificant hurdle for clinical applications.

Balancing temporal and spatial resolution is a major challenge for
real-time interventional MRI (i-MRI) in neurosurgery8,9. Acceleration
techniques suchas balanced steady-state precession (bSSFP)10, parallel
imaging11, generalized series12, and keyhole imaging13 are difficult to
meet real-time requirements. Over the past decade, compressed sen-
sing (CS)-based methods exploiting data sparsity have been used to
accelerate imaging speed14,15. By further utilizing the temporal infor-
mation, CS-based k-t methods have been proposed for real-time
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dynamic MRI16–18. Low-rank matrix imaging involving one or more
dimensions has become an established method for fast MR
imaging19–22. Decomposing the data matrix into a low-rank component
(L) and a sparse component (S), i.e., low-rank plus sparse decomposi-
tion (L + S) or robust principle component analysis (RPCA), has been
proposed and applied for dynamic MRI23–26 and other fields27,28. In
addition, high temporal resolution imaging has been achieved using a
nonlinear inverse reconstruction method with undersampled radial
sampling for real-time cardiovascular MRI29,30. However, the relatively
low spatial resolution may not satisfy the requirements for neurosur-
gery. Recently, a combination of Low-rank and Sparsity decomposition
with Framelet transform and Primal dual fixed point optimization
(LSFP) was proposed for i-MRI reconstruction with a group-based
reconstruction scheme31. However, complex parameter tuning and
long computation time are required, which cannot satisfy the online
reconstruction requirement of real-time i-MRI.

Deep learning (DL) can greatly improve reconstruction quality
and accelerate computation speed, making it especially useful in fast
MRI32–34. Typical DL networks include AUTOMAP35, GAN36, U-nets37,
transformers38, and diffusion models39. For further utilizing temporal
information, a convolutional recurrent neural network (CRNN) was
proposed for dynamicMRI40. Similarly, Jaubert et al. developed a deep
artifact suppression method using recurrent U-Nets for real-time car-
diac MRI37. A DL-based image reconstruction and motion estimation
from undersampled radial k-space has also been applied to real-time
MRI-guided radiotherapy41. However, these data-driven networks rely
on large-scale training datasets and have limited interpretability and
generalizability42. To overcome these limitations, unrolled networks
were proposed. Typical models include cascaded networks43, ISTA-Net
(unrolling of the iterative shrinkage-thresholding algorithm)44, ADMM-
Net (unrolling of alternating direction method of multipliers
method)45, and variational network (unrolling of gradient descent
algorithm)46. An unrolled variational network with an undersampled
spiral k-space trajectory was also developed for real-time cardiac MRI
reconstruction47. However, only exploiting sparse prior limits the
performance of these networks. By utilizing both low-rank and sparse
priors, SLR-Net48 and L + S-Net49 have become two state-of-the-art

unrolled networks for dynamicMRI reconstruction. However, SLR-Net
and L + S-Net are designed for retrospective reconstruction with Car-
tesian sampling, which cannot satisfy the online reconstruction
requirement of real-time i-MRI.

In this study, we proposed LSFP-Net for i-MRI reconstruction by
unrolling the iterative LSFP algorithm into a neural network. The low-
rank and sparse priors and spatial sparsity of both low-rank and sparse
components are utilized. The group-based reconstruction with peri-
odic radial sampling makes LSFP-Net satisfy the online reconstruction
requirement for real-time i-MRI. Simulated and clinical images were
used to train and test the LSFP-Net. By deploying the trained LSFP-Net
on a 3 TMRI scanner,weused a custom-designed interventional device
to demonstrate the feasibility of the proposed i-MRI system for brain
intervention. Imaging performancewas evaluated using interventional
phantoms and cadaver studies.

Results
Real-time i-MRI reconstruction with LSFP-Net
In i-MRI, the slowly changing background and dynamic interventional
features could be decomposed into a low-rank matrix L and a sparse
matrix S from an image sequence x31, i.e., x=L+ S. A Low-rank and
Sparsity decomposition with Framelet and Primal dual fixed point
(LSFP) method for i-MRI reconstruction was unrolled into a deep
neural network, dubbed as LSFP-Net, for real-time i-MRI reconstruc-
tion (Supplementary Fig. 1 and Supplementary Movie 1). Specifically,
LSFP-Net is composed of Nb blocks and each block strictly corre-
sponds to one iteration in the LSFP algorithm. In LSFP-Net, fewer
iterations were needed, which can significantly reduce the recon-
struction cost. The hyper-parameters are learnable during the LSFP-
Net training, which avoids tedious parameter tuning.

To improve motion resilience and achieve high-fold acceleration,
the k-space data were acquired with a multi-coil golden-angle radial
sampling, and the sampling trajectory was repeated with a period of
one group of spokes (Fig. 1a). Multiple interventional images were
simultaneously reconstructed in a group-wise manner with low-rank
and sparse constraints along the temporal dimension (Fig. 1b). A
simulated interventional dataset was prepared to train LSFP-Net

Fig. 1 | LSFP-Net for real-time i-MRI reconstruction. a A golden-angle radial
sampling pattern (golden angle = 111.25°) was used for k-space data acquisition.
b Multiple interventional images were reconstructed simultaneously in a group-

wise way. c LSFP-Net was trained on a simulated dataset. d For inference, inter-
ventional images were reconstructed in real-time using the trained LSFP-Net.
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(Fig. 1c). For inference, interventional images were reconstructed in
real-time using the trained LSFP-Net (Fig. 1d).

For 3D imaging, a stack-of-stars golden-angle radial sampling
scheme was adopted (Supplementary Fig. 2a). This allows for the dif-
ferent resolutions in the x-y plane and in the z direction, and a slice-by-
slice 2D reconstruction uses less memory50. The sampling trajectory
was also repeated with a period of one group of spokes. After col-
lecting one group of data, all slices were detangled by Fast Fourier
Transform (FFT) along the z direction. Then, the k-space data of each
slice was divided into several frames and reconstructed by LSFP-Net
(Supplementary Fig. 2b).

Performance evaluation on the simulated dataset of brain
intervention
For training of the LSFP-Net, brain intervention was simulated based
on brain images acquired from volunteers (Fig. 2a and Supplementary
Movie 2). With 10 spokes for the reconstruction of each frame
(acceleration factor R = 20), we compared the results of LSFP-Net with
two iterative CS methods (L + S23 and LSFP31) and four DL-based
methods (CRNN40, ISTA-Net44, SLR-Net48, and L + S-Net49). Compared
to other methods, LSFP-Net had the fewest artifacts and errors and
perfectly recovered the interventional features (Fig. 2b, c, and Sup-
plementaryMovie 3).Quantitatively, LSFP-Net yielded the near-highest
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Fig. 2 | The preparation of the training dataset and a comparison of different
methods. a A simulated dataset of brain intervention was prepared. b A compar-
ison of different methods. 10 spokes were used for the reconstruction of each
frame (acceleration factor R = 20). Five frames per group were used for L + S, LSFP,
CRNN, SLR-Net, L + S-Net, and LSFP-Net. c Themagnified view of the interventional

features. The area of the interventional feature is indicatedby the reddashedbox in
b. d–f The quantitative metrics of the different methods. The pixel values were
normalized without dimension. d, e The data are presented as mean values ±
standarddeviation, and the sample size is n = 64. Source data ofd–f are provided as
a Source Data file.

Article https://doi.org/10.1038/s41467-023-43966-w

Nature Communications |         (2023) 14:8257 3



PSNR and SSIM (Fig. 2d, e). In terms of reconstruction time, LSFP-Net
requiredonly0.21 s for onegroup reconstruction,which is comparable
to other DL-based methods (CRNN, ISTA-Net, SLR-Net, and L + S-Net)
and about 10 times faster than CS-based methods (L + S and LSFP)
(Fig. 2f). The enhanced performance of LSFP-Net can be attributed to
its ability to leverage the spatial sparsity of both low-rank and sparse
components, as well as its capability to learn the regularized para-
meters during the training stage, setting it apart from other methods.

Acceleration factors
A total of 5, 8, and 20 spokes for each frame were used for recon-
struction to evaluate the performance of the proposed method
(Fig. 3a–c). The acceleration factors are 40, 25, and 10, respectively.
The proposed LSFP-Net also achieved a near-optimal performance in
terms of PSNR and SSIM. The reconstruction time for both the LSFP-
Net and L + S-Net is less than one second. The computation speed of
LSFP-Net is more than 20 times faster than that of LSFP, and
approximately 3 times faster than that of L + S-Net.

Iterations and convolutional layers for LSFP-Net
The numbers of iterative blocks Nb and convolutional layers Nc in {ψL,
ψT
L , ψS, ψ

T
S } determine the depth of LSFP-Net. To figure out their effect

on the reconstruction, different values of Nb andNc were investigated.

First, different Nb = 1, 2, 3, 5, 7, 9, and 11 were used with a fixed Nc = 3
(Fig. 3d–f). The PSNR/SSIM improved from 28.42/0.93 to 39.11/0.99
with the increase of iteration blocks from 1 to 11, and the increase of
time cost from 0.11 s to 1.02 s. Therefore, a tradeoff is needed to bal-
ance performance and computational time. A comparison with other
DL-based methods showed that LSFP-Net with Nb = 2 achieved better
performance with a similar number of parameters (Fig. 2 and 3, and
Supplementary Table 1). Moreover, when Nb was increased to 3, the
PSNR/SSIM values improved with only a slight increase of 0.09 s in
computational time. As a result, Nb = 3 was chosen for the phantom
and cadaver experiments. Second, Nc = 3, 5, 7, 9, and 11 were also used
with a fixed Nb = 3 (Fig. 3g–i). The reconstruction quality fluctuated
and the reconstruction time increased with increasing Nc. This was
because LSFP-Net became more complex as the number of convolu-
tional layers increased, which could affect the generalizability of the
network. Therefore, Nb = 3 and Nc = 3 were selected for the recon-
struction of phantom and cadaver experiments.

Parameters of LSFP-Net
For real-time imaging, a group-based data acquisition and recon-
struction scheme was adopted. For p radial spokes of k-space data, we
can use different combinations ofm spokes per frame (SPF =m) and n
frames per group (FPG = n) for reconstruction when satisfying
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Fig. 3 | Results of different parameters for LSFP-Net. a–c A comparison of dif-
ferent methods with R = 40, 25, and 10. d–f The results of different iterations of
LSFP-Net. g–i The results of different convolution layers for the sparsity transform
of LSFP-Net. j–lThe results of different combinations of spokes per frame (SPF) and

frames per group (FPG). a, b, g, h, j, k The data are presented as mean values ±
standard deviation, and the sample size isn = 64. Source data of a–l are provided as
a Source Data file.
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p=m×n. Here, we reconstructed images using two combinations of
(SPF = 10, FPG = 5) and (SPF = 5, FPG = 10) for 50 radial spokes and
using two combinations of (SPF = 20, FPG = 5) and (SPF = 10, FPG = 10)
for 100 radial spokes (Fig. 3j–l). A higher SPF could result in better
reconstruction quality but lower temporal resolution per frame. A
smaller SPF may result in a higher temporal resolution per frame but a
longer reconstruction time due to a higher FPG. Therefore, a tradeoff
between temporal resolution and reconstruction quality can be
achieved by selecting different combinations of SPF and FPG. Here
considering the reconstruction quality, we chose (SPF = 20, FPG = 5)
for the reconstruction of phantom and cadaver experiments.

Performance evaluation on the simulated dataset of DBS elec-
trode placement
Based on a series of postoperative MR images of DBS electrode pla-
cement, a simulated dataset was generated to evaluate the general-
izability of LSFP-Net (Fig. 4a). Compared to other methods, there are
noobvious artifacts in the images reconstructedby L + S-Net and LSFP-
Net, and the interventional features can be easily distinguished
(Fig. 4b). In terms of PSNR and SSIM, the performance of LSFP-Net
(PSNR/SSIM= 28.45/0.92) was comparable to that of L + S-Net (PSNR/
SSIM= 28.25/0.95). The reconstruction speed of LSFP-Net (0.23 s) was
about 5 times faster than that of L + S-Net (1.30 s), outperforming the
iterative methods (L + S and LSFP).

Real-time MRI-guided brain intervention system
To achieve the brain intervention with real-time i-MRI guidance, an
i-MRI system integrating LSFP-Net and a custom-designed interven-
tional device was implemented on a 3 TMRI scanner (uMR790, United
Imaging Healthcare, Shanghai, China) (Fig. 5a). A trained LSFP-Net was
deployed on a Gadgetron server. Continuously acquired radial k-space
data during the intervention was reconstructed online at the server
and immediately sent to the console. The custom-built interventional

device was fixed on the skull for intervention. The interventional
devicewas connected to a steppermotor via torque rods and a flexible
shaft. The interventional depth and speed were controlled by the
motor in the control room.

An MR-compatible interventional device with 4 degrees of free-
dom (DOFs)wasdesigned. Thedevice consistedof a base, a ball-joint, a
locking ring, and a lead screw-nut mechanism (Fig. 5b). The ceramic
interventional needle (ϕ1.5mm) was fixed on the nut. Figure 5c shows
the system components in the control room, including the stepper
motor, driver, controller, and power supply. Figure 5d, e show the
components in the MR scanner room, including the interventional
device and the torque rod. The MR compatibility testing of the inter-
ventional device showed that the presence of the device had no effect
on MR imaging (Supplementary Fig. 5).

Phantom experiments
Two phantom intervention experiments were carried out to test the
real-time imaging and remotely actuated intervention capabilities of
the brain intervention system. In the fruit phantom, several red cherry
tomatoes and green grapes were embedded in a gelatin-filled cylinder
(Fig. 6a). The interventional device was fixed on the cover of the
cylinder and placed in the MR head coil (Fig. 6b). In the porcine-brain
phantom, two porcine brains were embedded into a gelatin-filled 3D-
printedhuman-skullmodel (Fig. 6c). An interventional device basedon
a lead-screw mechanism was placed in front of the phantom (Fig. 6d).

Before and after the intervention, two fully sampled 2D images
(1.6 s/frame)were acquired to show the initial and final positions of the
needle (Fig. 6e, g). For the fruit phantom, the ceramic needle moved
~61mm with a uniform velocity of ~1.525mm/s for 40 s. For the
porcine-brain phantom, the ceramic needle moved ~90mm with a
uniform velocity of ~2.25mm/s for 40 s. 2D radial k-space data were
acquired with a temporal resolution of 80ms/frame (400ms/group).
LSFP-Net reconstructed images in real-time for 370ms/group (Fig. 6f,
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vided as a Source Data file.
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Supplementary Movie 4, and Supplementary Movie 5). In the fruit
phantom experiment, the difference between the theoretical inter-
vention depth and the real-time image measurements was less than
1mm (Fig. 6h). In the porcine-brain phantom experiment, the differ-
ence between the theoretical intervention depth and the measure-
ments was approximately 1mm (Fig. 6i). The reconstruction time of
370ms using LSFP-Net for single group images (5 frames) is less than
the acquisition time of 400ms/group, which means that the latency
timewas400ms. Compared tootherDL-basedmethods, LSFP-Net and
L + S-Net have better generalizability (Fig. 6k). However, the compu-
tation timeof LSFP-Net is less thana fractionof that L + S-Net,making it
more suitable for real-time i-MRI (Fig. 6j).

We also performed 3D imaging experiments with fruit and
porcine-brain phantoms (Supplementary Figs. 6 and 7). 3D stack-of-
stars radial k-space data were acquired with a temporal resolution of
732.8ms/volume (3.66 s/group). One group of volumes was recon-
structed by LSFP-Net slice-by-slice, which took 2.96 s. Therefore, the
latency of the real-time 3D imaging is 3.66 s.

Cadaver head intervention
To demonstrate the potential of the proposed i-MRI system for clinical
potential applications, a cadaver head experiment was carried out. An
MR-compatible camerawasplacednext to theMRhead coil tomonitor
the movement of the needle (Fig. 7a, b). An MR-visible gelatin-filled
glass fiber tube was used for the trajectory planning (Fig. 7c). The
cerebral ventricle was selected as the target for ventricular drainage.
After the intervention, the interventional position of the ceramic
needle was validated by a 3D whole-brain T1-Weighted (T1W) MR
scan (Fig. 7d). Finally, the needle was withdrawn (Fig. 7e). Two fully
sampled 3D images (8 slices/volume) before and after the intervention
showed the initial and final positions of the ceramic needle (Fig. 7f, h).
As shown in Fig. 7g, undersampled 3D radial k-space data were
acquired with a temporal resolution of 732.8ms/volume (3.66 s/
group). The reconstruction time for one volumewas 2.96 s using LSFP-
Net. Therefore, the latency of real-time imaging was 3.66 s. The

interventional procedure can be visualized in the 6th slice of the
volume (Fig. 7g and Supplementary Movie 6). The needle was partially
visible in the 7th slice as the needle approached the lateral ventricle.

Discussion
In this study, LSFP-Net was proposed to real-time monitor the inter-
ventional process in real time and track the position of the interven-
tional feature for neurosurgery. By unrolling an iterative algorithm
(LSFP) into a neural network, LSFP-Net showed superior performance
and generalizability compared to other DL-based methods. It also
required fewer iterations in the inference stage thanCS-based iterative
methods. The results demonstrated the promise of LSFP-Net for real-
time i-MRI.

It is worth noting that the low-rank method has been established
as a classical way for MR image reconstruction19–26 and has been
adopted in various scenarios27,28. With the group-based acquisition
scheme using radial sampling, LSFP fully explores the low-rankness
and sparsity of the intervention process. In addition, to avoid sub-
problems, a Primal Dual Fixed Point (PDFP) algorithm was used for
optimization. The novelty of our method is that the LSFP-Net is spe-
cially designed for targeted intervention by leveraging the low-
rankness of the background information and the sparsity of the
intervention feature. This makes it especially useful for real-time
interventional guidance. In addition, LSFP-Net is based on multi-coil
radial sampling for online reconstruction. Moreover, LSFP-Net inherits
the advantages of the LSFPmodel, i.e., exploiting the spatial sparsity of
both low-rank and sparse components. Although unrolled networks
exploiting the low-rank and sparse priors have been used for fast MRI
reconstruction, such as SLR-Net48 and L + S-Net49, LSFP-Net differs
from them in many ways. For the application scenarios, SLR-Net and
L + S-Net were proposed for dynamic MRI, which were designed for
offline reconstruction after all data acquisition is completed. LSFP-Net,
on the other hand, was designed for real-time i-MRI. By usingmulti-coil
golden-angle radial sampling and a group-based reconstruction, LSFP-
Net meets the requirements for online reconstruction. In contrast,

Base
Locking ring

Ball joint
Lead screw

Universal joint
Ceramic needle 

MR scanner room Control room

Gadgetron server
(Trained LSFP-Net)

Monitor

Power supply

Controller

Stepper motor

DriverFlexible 
shaft

a

b c d

e

Torque rod

DriverMotor
Controller

Power

Interventional device

Fig. 5 | Real-time MRI-guided brain intervention system. a The MR-compatible
components of the system were located in the MR scanner room. The ferromag-
netic components were located in the control room. b The custom-designed

interventional device. cThe components in the control room.dThe components in
the MR scanner room. e The partially magnified view of d.
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SLR-Net and L + S-Net used Cartesian sampling and retrospective
reconstruction. In terms of network structure, SLR-Net and L + S-Net
only utilize the sparse prior of the sparse component and the low-rank
prior of the low-rank component, but LSFP-Net exploits the spatial
sparsity of both the low-rank and sparse components. LSFP-Net has
also been applied to 3D imaging, expanding its potential clinical
application scenarios.

Compared to Cartesian sampling, non-Cartesian sampling such as
radial sampling is less sensitive to motion9. Many DL-based methods
have been proposed for fast MRI with radial sampling37,51–56. Typically,
continuous golden-angle radial sampling has been carried out without
overlapping of radial spokes31. Here, by repeating the radial sampling
trajectory with a period of one group of spokes, reconstruction was
accelerated without the need to compute new sampling trajectories.

Different from frame-by-frame or retrospective reconstruction16–18,29,41,
the group-based reconstruction scheme31 fully utilizes the low-rank
and temporal sparsity constraints in the LSFPmodel and LSFP-Net. The
overlapped spokes sampledbetweendifferent groupswere shared and
used for the reconstruction of each group. Therefore, the sampling
time for each frame is equivalent to the non-group-based acquisition.

Although the computation cost of SVDdecomposition is high, the
number of iterations and the group-based reconstruction scheme also
affect the computation time. In the comparative experiments of the
simulated dataset and the DBS dataset, SLR-Net with 4 iterations, L + S-
Net with 15 iterations, and LSFP-Net with 2 iterations, and a group-
based reconstruction scheme (5 frames per group) were used. For
ISTA-Net, 12 iterations with a frame-by-frame reconstruction scheme
was used. In the simulated dataset of brain intervention, the

Fig. 6 | Results of the interventional experiments with a fruit phantom and a
porcine-brain phantom. a In the fruit phantom, several red cherry tomatoes and
greengrapeswere embedded into a cylinderfilledwith gelatin.bThe interventional
devicewas fixedon the cover of the cylinder and the combinationwas placed in the
MR head coil. c Two porcine brains were embedded into a 3D-printed human skull
model. d The porcine-brain phantom was placed in the MR head coil, and the
interventional device was prepared. e Fully sampled 2D MR images were acquired

before the intervention. f Real-time 2DMRImonitored the intervention using LSFP-
Net for reconstruction. g Fully sampled 2D MR images after the intervention.
h, i Comparison of the theoretical interventional depth and the measurements
from real-time images. j A comparison of the reconstruction time of different
methods on the fruit phantom experiment. k A comparison of different methods
on two phantom intervention experiments. Source data of h–j are provided as a
Source Data file.
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computation time of SLR-Net (0.20 s), L + S-Net (0.67 s), and LSFP-Net
(0.21 s) is longer than that of ISTA-Net (0.12 s). These results are con-
sistent with reported results in existing literature48,49.

Although many active tracking methods have been used for real-
time monitoring of interventional features57–59, they provide only
positional information without background tissue. The proposed real-
time i-MRI system can simultaneously monitor the interventional
needle and brain tissue with high spatiotemporal resolution. This
allows the operators to remotely control the intervention with real-
time images, which is critical for accurate brain intervention.

Thus far, several robotic systems have been proposed for MRI-
guided brain intervention60–62. For most of the systems, the interven-
tion and imaging were performed separately. As a result, patients
needed to be moved in and out of the scanner, compromising the
accuracy and efficiency of the surgery7. Simultaneous intervention and
imaging may be an ideal way for MRI-guided interventions. Li et al.
demonstrated a 5-DOF piezoelectrically-actuated robotic system for
MRI-guided DBS lead placement, allowing the intervention within the
bore with synchronous imaging at 700ms temporal resolution63.
Unterberg-Buchwald et al. achieved real-time MRI-guided endomyo-
cardial biopsy based on radial FLASH with nonlinear inverse recon-
struction (NLINV) with an in-plane spatial resolution of 2 × 2mm2, a
temporal resolution of 42ms, and a latency of 0.27 s30. Guo et al.
presented a hydraulic driving robot for MRI-guided bilateral stereo-
tactic neurosurgery with an in-plane spatial resolution of
0.98 × 0.98mm2 and a temporal resolution of 17.4 s59. Using a
selectively-actuated MRI-compatible continuum robot, Cheng et al.
achieved the interactive MRI-guided cadaver neurosurgery with an in-
plane spatial resolution of 1.4 × 1.4mm2 and a temporal resolution of
1.5 s64. He et al. proposed LSFP for i-MRI reconstruction and achieved
an in-plane spatial resolution of 1.17 × 1.17mm2, a temporal resolution
of 60ms, and a latency of 10.14 s31. In this work, a 4-DOF MR-compa-
tible interventional device was developed for remotely controlled
intervention within the MRI bore. Together with LSFP-Net, a real-time

i-MRI system was established on a 3 T MR scanner with 1 × 1mm2 in-
plane spatial resolution, 80ms temporal resolution, and 0.4 s latency
for 2D imaging (1 × 1mm2, 732.8ms, and 3.66 s for 3D imaging). The
agreement between the theoretical intervention and the measure-
ments from the real-time images demonstrated the real-time perfor-
mance of the system. The cadaver head intervention further
demonstrated the potential of the system for clinical applications.

In this study, we proposed LSFP-Net for real-time i-MRI-guided
neurosurgery. For clinical application, a total of 2400 coronal slices (5
frames for each slice) generated from 23 patients with deep brain
stimulation surgery were used for model training and validation. In
addition, to demonstrate the performance and applicability in clinical
scenarios, a custom-designed, MRI-compatible interventional device
was used to construct an experimental system for brain intervention. A
cadaver headwas placed in a diagnostic scanner to further validate the
performance of the model in neuro-intervention. With temporal
resolutions of 80/732.8ms for 2D/3D real-timeMRI and in-plane spatial
resolution of 1 × 1mm2, the proposed method showed the potential to
be integrated into diagnostic scanners for image-guidedneurosurgery.
However, for application in live patients, a fully fledged robotic system
with required regulatory and ethical approval is required to ensure the
safety of the patients. Future works include training and testing with a
larger sample size, and integration of the proposedmodel to a robotic
system for additional validations.

Methods
This study was approved by the Science and Technology Ethics Com-
mittees of Shanghai JiaoTongUniversity, and theRuijinHospital Ethics
Committee of Shanghai Jiao Tong University School of Medicine.

LSFP-Net for real-time i-MRI reconstruction
For imaging during the intervention process, the background remains
relatively stable, with changes primarily centered around the target
region. Therefore, the low-rankness of the background information is

f

c d e

6th slice

7th slice

5th slice

Initial position
(Fully sampled,14.7s)

Final position
(Fully sampled,14.7s)

Interventional process (3D, LSFP-Net recon)
20 spokes/slice (91.6ms) 8 slices/volume (732.8ms) 5 volumes/group (3.66s) hg

ba
Camera

Cadaver head Camera view

t=0s t=11.0s t=40.3s t=58.6s t=98.9s t=161.2s t=170s

Fig. 7 | Results of the cadaver head interventional experiment. a The interven-
tional device was fixed to the cadaver head. AnMR-compatible camera was used to
monitor the movement of the interventional device. b The view from the MR-
compatible camera. cAgelatin-filled glass fiber tube (indicated by a yellow triangle)
was used for the trajectory planning.dWhole-brain T1WMR scan after intervention
shows the final position of the ceramic needle (indicated by a yellow triangle).

e Whole-brain T1W MR scan after needle withdrawal. f Fully sampled MR images
with 3D GRE radial sequence showing the initial needle position before the inter-
vention. g Real-time MRI monitors the interventional procedure with a temporal
resolution of 732.8ms/volume (3.66 s/group). h Fully sampled MR images with 3D
GRE radial sequence indicate the final needle position after the intervention.
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leveraged by using a low-rank matrix L, and the sparsity of the inter-
vention feature is incorporated through a sparse matrix S. The image
sequence x could therefore be decomposed into a low-rank matrix L
and a sparsematrix S, i.e., x=L+S. Themodel of LSFP was formulated
as:

fL,Sg= argmin
L,S

1
2

EðL+SÞ � d
�
�

�
�
2
2 + λL Lk k* + λs ∇tS

�
�

�
�
1 + λ

ψ
L ψL
�
�

�
�
1 + λ

ψ
S ψS
�
�

�
�
1,

ð1Þ

whereE=ΩFC is the encodingoperator,C is the coil sensitivitymaps,F
is a Fourier transform, Ω is the sampling scheme. d is the acquired
k-space data. ∇t represents a total variation along the temporal
direction of S. ψ is the framelet transform. λL, λs, λ

ψ
L andλψS are the

regularization parameters. The updating steps of LSFP were summar-
ized in Supplementary Fig. 1a.

LSFP was unrolled into a deep neural network called LSFP-Net. In
LSFP-Net, the sparsifying transform ψ was learnable and replaced by a
combination of a 3D convolutional neural network. To improve the
performance of the network, the transform pairs {ψL, ψ

T
L } and {ψS, ψ

T
S }

are learned by different networks. The complex inputs of the con-
volution block were divided into real and imaginary channels. The first
layer of the convolution block ψ and the last layer of the convolution
block ψT have 2 convolution kernels, and the other layers have 32
convolution kernels. The size of each convolution kernel was 3× 3× 3.
Rectifier linear units (ReLU) were selected as the nonlinear activation
functions.

Simulated dataset of brain intervention
To evaluate the performance of LSFP-Net, a set of brain interventional
images was simulated for training and testing. The fully sampled brain
MR images from 10 healthy subjects (age 25.87 ± 2.78 years old, 5
Females, 5 Males) were collected on a 3 T MRI scanner (uMR 790,
United Imaging Healthcare, Shanghai, China). All subjects provided
informed consent, as approved by the Science and Technology Ethics
Committees of Shanghai Jiao Tong University. For each subject, 8
coronal slices were acquired with a matrix size of 128× 128 and 11
channels (T1W Fast Spin Echo FLAIR sequence, TR/TE = 2443/10.18ms,
flip angle = 135°, number of excitations = 1, matrix size = 128× 128, field
of view = 224× 224 × 32mm3, slice thickness = 4mm). Four different
interventional setups (2 unilateral and 2 bilateral) were simulated with
200 frames for each slice (Fig. 2a and Supplementary Movie 2). The
training data consisted of 256 image sequences from 8 subjects. The
test data set consisted of 64 image sequences from another 2 subjects.
The multi-coil Non-Uniform Fast Fourier Transform (NUFFT) was
adopted for simulating the golden-angle radial k-space data acquisi-
tion. For radial sampling, the number of fully sampled radial spokes is
128 × π

2 ≈201. The acceleration factor was R = SPF/201 where SPF is
spokes per frame.

Dataset from DBS patients
Postoperative MR images of patients after DBS were used to evaluate
the performance of LSFP-Net (Fig. 4a). The images were acquired on a
GE Healthcare Signa HDx 1.5 T MRI scanner. Three-dimensional, T1W,
Fast SPoiled Gradient Recalled echo (3D-T1FSPGR) images were
acquired (TR/TE = 8.23/2.6ms, flip angle = 20°, number of excita-
tions = 1, matrix size = 512 × 512, field of view = 224 × 224 × 304mm3,
slice thickness=2mm). All patients provided informed consent, as
approved by the Ruijin Hospital Ethics Committee of Shanghai Jiao
Tong University School of Medicine. The interventional features (DBS
electrode) were first extracted from each slice of MR images. Then,
sequential interventional images were generated to simulate the pro-
cedure of the intervention. A total of 2400 coronal slices (5 frames for
each slice) were generated from23patients for training and validation.
A total of 188 slices (5 frames for each slice) from another 6 patients

were used for testing. The multi-coil golden-angle radial sampling
strategy was used for k-space sampling. Eight sensitivity maps were
simulated using a toolbox from torchkbnufft65. For each time frame, a
total of 402 radial sampling spokes were collected with 512 readout
points for each spoke.

Real-time brain i-MRI system
In this work, the proposed LSFP-Net was integrated into a 3 T diag-
nostic scanner (uMR790, United Imaging, Shanghai, China) using
Gadgetron66. Briefly, the workflow of using Gadgetron for recon-
struction is: (1) k-space data acquired from an MRI scanner was
transmitted to a Gadgetron sever; (2) Images were reconstructed with
trained LSFP-Net in Gadgetron server and transmitted to MRI host
computer; (3) the reconstructed images were displayed on the MRI
console. In this way, LSFP-Net can be readily integrated into any MRI
scanners that support the Gadgetron framework. During the inter-
vention, once the radial k-space data were acquired, they were trans-
mitted to a Gadgetron server installed with an Ubuntu 20.04 LTS (64-
bit) operating system and equipped with an AMD ryzen 9 5950× cen-
tral processing unit (CPU) and NVIDIA RTX 3090 graphics processing
unit (GPU, 24 GB memory). The reconstructed images were then dis-
played online on the MR console.

The custom-built MR-compatible interventional device has 4
degrees of freedom (DOFs). A 3-DOF ball-joint mechanism (3D-printed
epoxy, ± 30

�
) was used formanual trajectory adjustment. A 1-DOF lead

screw-nut mechanism (PMMA, aluminum, and carbon-fiber tubes,
88mm)was remotely actuated by a stepper motor. The dimensions of
the device are about 50× 60 × 170mm3 and the weight is ~60 g. The
screw rod and the motor were connected by torque rods and a
stainless-steel flexible shaft. The torque rod consisted of several uni-
versal joints (3D-printed nylon) and carbon-fiber tubes (ϕ = 4mm). All
components in the MR scanner room, including the interventional
device and torque rod, are MR-compatible. The ferromagnetic parts
were all in the control room.

Phantom experiments
A 2D gradient echo (GRE) sequence with golden-angle radial sampling
was usedwith the following sequence parameters: FOV= 256×256mm2,
acquisitionmatrix = 256× 256, slice thickness = 5mm, channels = 17, TR/
TE = 4/2.01ms, and flip angle = 30°. A total of 100 group data
(100× 100 spokes) were acquired with an acquisition time of 40 sec-
onds. Two fully sampled images were acquired before and after the
intervention for comparison. For radial sampling, the number of fully
sampled radial spokes is 256 × π

2 ≈402 with an acquisition time of 1.6 s.
For the 3D case, a 3D GRE sequence with a stack-of-stars golden-angle
radial sampling was used with the following sequence parameters:
FOV= 256 ×256 ×24mm3, acquisition matrix = 256× 256 ×8, slice
thickness = 3mm, channels = 17, TR/TE= 4.58/1.76ms, and flip angle =
10°.As in the2Dcase, 20 radial spokesper slice and5volumespergroup
wereused for reconstruction. A total of 11 groupdatawere acquiredwith
an acquisition time of 40.3 s.

Cadaver head experiment
Thecadaver studywasperformedwithapproval fromtheRuijinHospital
Ethics Committee of Shanghai Jiao Tong University School of Medicine.
Anatomical brain images were acquired using a T1W, Fast SPoiled GRa-
dient Echo (3D T1 FSP GRE) sequence. The following parameters were
used: TR/TE= 7.22/3.1ms, flip angle = 8°, number of excitations = 1,
matrix size = 300× 320×208, field of view=240× 256× 166.4mm3, and
slice thickness =0.8mm.Theseparameters resulted in a voxel volumeof
0.8 mm3. A 3D GRE sequence with a stack-of-the-stars golden-angle
radial sampling was used with the same sequence parameters in 3D
phantom experiments. Lateral ventricle intervention with a ceramic
needlewas imaged in real-timewith the continuous acquisitionof the3D
radial k-space.
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Comparison with other algorithms
In this study, with 10 spokes for the reconstruction of each frame
(acceleration factor R = 20), we compared the results of LSFP-Net with
two iterative CS methods (L + S23 and LSFP31) and four DL-based
methods (CRNN40, ISTA-Net44, SLR-Net48, and L + S-Net49). For detailed
performance comparison using both the simulated and DBS datasets,
CRNN was kept with its original settings as a reference. A similar
number of model parameters were kept by varying unfolding itera-
tions for the DL-based unrolled networks. Specifically, a total of 12, 4,
15, and 2 iterations were used for ISTA-Net, SLR-Net, L + S-Net, and
LSFP-Net, respectively (Supplementary Table 1). Based on the com-
parative results (Figs. 2 and 3, and Supplementary Table 1), LSFP-Net
with 3 iterations was chosen for the phantom and cadaveric experi-
ments by considering the tradeoff between reconstruction quality and
computation time.

Performance evaluation
Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
were used to evaluate the performance of i-MRI. The Adamoptimizer67

with parameters β1 = 0:9, β2 =0:999, ε = 10
�8, and a learning rate of

0.0001, and a batch size of 1 (due to the limited GPU memory) were
used for training. The models were implemented using Pytorch based
on the torchKbNufft65 with an Ubuntu 20.04 LTS (64-bit) operating
systemequippedwith an i9-12900KCPU andNVIDIARTX 3080Ti GPU
(12 GB memory). Training LSFP-Net took ~5 hours for 100 epochs.

Statistics and reproducibility
The code and datasets used for training and testing the deep-learning
models are made publicly available for reproducibility68,69. The mean
values and standard deviations of PSNR/SSIM were calculated in all
comparative experiments. No statistical method was used to pre-
determine the sample size. No data were excluded from the analyses.
In both simulated datasets of brain intervention and DBS patients, the
training and testing datasets were randomly allocated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets for training and testing LSFP-Net have been deposited in
Figshare under accession code DOI link68. Source data are provided
with this paper.

Code availability
The code for implementation of the LSFP-Net is made publicly
available69. Other information is available from the corresponding
author (Y.F.) upon request.
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