陶春辉

所在单位:海洋学院

电子邮箱:taochunhui@sjtu.edu.cn

查看更多>

教师主页二维码

个人简介

中文主页 - 首页 - 个人简介

陶春辉简介

陶春辉,自然资源部第二海洋研究所研究员,博导,浙江省特级专家、中组部万人计划。海底科学重点实验室研究员、上海交通大学海洋学院兼职副院长。先后担任国际大洋中脊协会洋中脊硫化物资源工作组联合主席、国际海底管理局秘书长深海研究卓越奖咨询委员、中国大洋协会西南印度洋硫化物勘探与资源评价总地质师和“十二五”863主题专家等。

陶春辉一直致力于国际海底资源找矿国家专项与基础研究,在海底硫化物找矿模型、技术方法等方面取得创新性成果,是我国首次在世界三大洋发现海底热液区的科学家。作为中国大洋科考1920222630航次总首席科学家通过在三大洋调查、评价优选出硫化物调查靶区,在我国的海底硫化物资源找矿领域取得重大突破;带队在西南印度洋发现了国际上首个超慢速扩张脊热液活动区,实现了我国在海底硫化物发现“零”的突破,推动了我国成为海底硫化物资源勘探先进的国家,为我国获得了在西南印度洋的世界第一个硫化物矿区合同,维护了我国在国际海底的权益。致力于大洋资源探测技术创新,推动组建大洋矿产资源立体探测体系;研发了国内首套“多频海底声学原位测试系统”并实现产品化,建立了多参数正反演模型,解决了海底沉积物声特性高精度测量难题。研制出在线式便携式赤潮与渔场环境监测系统”,促进了浙江省近海环境保护。

主要荣誉

1. 陶春辉,全国先进工作者,2020年,国务院

2. 陶春辉, 李家彪, 李波, .超慢速扩张洋中脊热液硫化物发现于探测关键技术创新,2019年,国家科学技术进步奖二等奖,科技部

3. 陶春辉,中青年科技创新领军人才,2013年,科技部

4. 陶春辉,浙江省有突出贡献中青年专家,2013年,浙江省政府

5. 陶春辉,全国优秀科技工作者,2012年,中国科学技术协会

6. 陶春辉, 李家彪, 韩喜球, . 印度洋多金属硫化物找矿与评价,2012年,海洋工程科学技术奖一等奖,中国海洋工程协会

7. 陶春辉, 李家彪, 韩喜球, . 洋中脊海底热液区的发现,2011年,国家海洋局海洋创新成果奖一等奖,国家海洋局

8. 陶春辉,政府特殊津贴,2010年,人力资源和社会保障部

9. 陶春辉. 第一届曾呈奎海洋科技奖青年科技奖,2010年,中国海洋湖沼学会

10.陶春辉, 周建平, 邓显明, . 多频海底声学原位测量系统,2009年,国家海洋局海洋创新成果奖二等奖,国家海洋局

代表性著作

论文:

1.        Chen S., Tao C., German C R. Abundance of low-temperature axial venting at the equatorial East Pacific Rise. Deep Sea Research Part I: Oceanographic Research Papers. 2021 167103426.doi: 10.1016/j.dsr.2020.103426

2.        Liu L., Lu J., Tao C., et al. Prospectivity Mapping for Magmatic-Related Seafloor Massive Sulfide on the Mid-Atlantic Ridge Applying Weights-of-Evidence Method Based on GIS. Minerals. 2021 111):83.doi: 10.3390/min11010083

3.        Liu L., Lu J., Tao C., et al. GIS-based Mineral Prospectivity Mapping of Seafloor Massive Sulfide on Ultraslow-spreading Ridges: A Case Study of Southwest Indian Ridge 48.7°–50.5° E. Natural Resources Research. 2021.doi: 10.1007/s11053-020-09797-y

4.        Ding T., Tao C., Dias Á A., et al. Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: implications for mineralization in ultramafic rocks. Mineralium Deposita. 2020.doi: 10.1007/s00126-020-01025-0

5.        Guo Z., Lars Rupke., Tao C.  HydrothermalFoam v1.0: a 3-D hydro-thermo-transport model for natural submarine hydrothermal systems 2020.doi: 10.5194/gmd-2020-140

6.        Guo Z., Tao C. Potential field continuation in spatial domain: A new kernel function and its numerical scheme. Computers & Geosciences. 2020 136104405.doi: 10.1016/j.cageo.2020.104405

7.        Li H., Tao C., Liu C., et al. Frequency-dependent reflection of elastic wave from thin bed in porous media. Chinese physics B. 2020 296):64301.doi: 10.1088/1674-1056/ab888b

8.        Li H., Tao C., Yue X., et al. Enhanced hydrothermal activity on an ultraslow-spreading supersegment with a seismically detected melting anomaly. Marine Geology. 2020 430106335.doi: 10.1016/j.margeo.2020.106335

9.        Li W., Tao C.,Liang J. Heterogeneous mantle melting and magmatic processes at the East Pacific Rise (2.6 – 3.1°S): Evidence from mid-ocean ridge basalt geochemistry and Sr – Nd – Pb isotopes. International Geology Review. 2020 6211):1387-1405.doi: 10.1080/00206814.2019.1647467

10.    Shen H. L.,Tao C., Elboth, Thomas., et al. Optimizing spatial distribution to minimize the inline directivity for a marine air-gun source. Geophysics. 2020 853):P37-P44.doi: 10.1190/geo2019-0544.1

11.    Wang S., Chang L., Wu T., et al. Progressive Dissolution of Titanomagnetite in High‐Temperature Hydrothermal Vents Dramatically Reduces Magnetization of Basaltic Ocean Crust. Geophysical Research Letters. 2020 478.doi: 10.1029/2020GL087578

12.    Zhu C., Tao C., Yin R., et al. Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge. Geochimica et Cosmochimica Acta. 2020 28191-101.doi: 10.1016/j.gca.2020.05.008

13.    Zhu Z., Tao C., Shen J., et al. Self‐Potential Tomography of a Deep‐Sea Polymetallic Sulfide Deposit on Southwest Indian Ridge. Journal of Geophysical Research: Solid Earth. 2020 12511.doi: 10.1029/2020JB019738

14.    Tao C., Seyfried W ELowell R P., et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nature Communications. 2020 111.doi: 10.1038/s41467-020-15062-w

15.    Shen H., Elboth T., Tao C., et al. Using Data‐Regrouping Methods to Attenuate Shot‐to‐Shot Coherent Interference Noise in Marine Seismic Data. Earth and Space Science. 2019 67):1098-1108.doi: 10.1029/2018EA000485

16.    Li W., Tao C., Zhang W., et al. Melt Inclusions in Plagioclase Macrocrysts at Mount Jourdanne, Southwest Indian Ridge (~64° E): Implications for an Enriched Mantle Source and Shallow Magmatic Processes. Minerals. 2019 98):493.doi: 10.3390/min9080493

17.    Liao S., Tao C., Dias Á A., et al. Surface sediment composition and distribution of hydrothermal derived elements at the Duanqiao-1 hydrothermal field, Southwest Indian Ridge. Marine Geology. 2019 416105975.doi: 10.1016/j.margeo.2019.105975

18.    Liao S., Tao C., Zhu C., et al. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the Southwest Indian Ridge: Insight from Zn isotopes. Chemical Geology. 2019 50754-63.doi: 10.1016/j.chemgeo.2018.12.037

19.    Liu Y., Tao C., Liu C., et al. Seismic activity recorded by a single OBS/H near the active Longqi hydrothermal vent at the ultraslow spreading Southwest Indian Ridge (49°39′ E). Marine georesources & geotechnology. 2019 372):201-211.doi: 10.1080/1064119X.2017.1420114

20.    Wu R., Tao C., Chen X. G., et al. Fabrication of Multi-parameter Chemical Sensor and its Application in the Longqi Hydrothermal Field, Southwest Indian Ocean. International journal of electrochemical science. 2019 3871-3884.doi: 10.20964/2019.03.66

21.    Zhou J., Tao C., Li H., et al. The physical model with temperature and pressure controlled for measuring acoustic velocity of marine sediments. Marine georesources & geotechnology. 2019 375):633-640.doi: 10.1080/1064119X.2018.1469057

22.    Chen J., Tao C., Liang J., et al. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanologica Sinica. 2018 3711):61-67.doi: 10.1007/s13131-018-1333-y

23.    Li H. X., Tao C., Liu C., et al. A Modified Biot/Squirt Model of Sound Propagation in Water-Saturated Sedment1. PHYSICAL ACOUSTICS. 2018 644):453-458.doi: 10.1134/S1063771018040061

24.    Liao S., Tao C., Li H., et al. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge. Marine Geology. 2018 39822-34.doi: 10.1016/j.margeo.2017.12.005

25.    Liao S., Tao C., Li H., et al. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews. 2018 9613-27.doi: 10.1016/j.oregeorev.2018.04.007

26.    Liu Y., Liu C., Tao C., et al. Time correction of the ocean bottom seismometers deployed at the southwest Indian ridge using ambient noise cross-correlation. Acta oceanologica Sinica. 2018 375):39-46.doi: 10.1007/s13131-018-1209-1

27.    Sun C., Wu Z., Tao C., et al. The deep structure of the Duanqiao hydrothermal field at the Southwest Indian Ridge. Acta Oceanologica Sinica. 2018 373):73-79.doi: 10.1007/s13131-017-0986-2

28.    Wu T., Tao C., Zhang J. H ., et al. Correction of tri-axial magnetometer interference caused by an autonomous underwater vehicle near-bottom platform. Ocean Engineering. 2018 16068-77.doi: 10.1016/j.oceaneng.2018.04.066

29.    Zhou F., Tao C., Wu T., et al. 3D Focused Inversion of Near-bottom Magnetic Data from Autonomous Underwater Vehicle in Rough Seas. Ocean Science Journal. 2018 532):405-412.doi: 10.1007/s12601-018-0030-2

30.    Tao C., Wu T., Liu C., et al. Fault inference and boundary recognition based on near-bottom magnetic data in the Longqi hydrothermal field. Marine Geophysical Research. 2017 381-2):17-25.doi: 10.1007/s11001-016-9283-2

31.    Tao C., Chen S., Baker E T., et al. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Marine Geophysical Research. 2017 381-2):3-16.doi: 10.1007/s11001-016-9275-2

32.    Yang W., Tao C., Li H., et al. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Marine Geophysical Research. 2017 381-2):71-83.doi: 10.1007/s11001-016-9279-y

33.    黄威., 陶春辉李军., et al. 洋中脊热液系统中的锇及其同位素. 地球科学. 2016 4103):441-451

34.    Wu T., Tao C., Liu C., et al. Geomagnetic Models and Edge Recognition of Hydrothermal Sulfide Deposits at Mid-ocean Ridges. Marine Georesources & Geotechnology. 2016 1-8.doi: 10.1080/1064119X.2015.1068893

35.    Wu T., Tao C., Liu C., et al. Geomagnetic Models and Edge Recognition of Hydrothermal Sulfide Deposits at Mid-ocean Ridges. Marine georesources & geotechnology. 2016 347):630-637.doi: 10.1080/1064119X.2015.1068893

36.    Tao C., Jin X., Aifei B., et al. Estimation of Manganese Nodule Coverage Using Multi-Beam Amplitude Data. Marine Georesources & Geotechnology. 2015 334):283-288.doi: 10.1080/1064119X.2013.806973

37.    Tao C., Li H., Jin X., et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Science Bulletin. 2014 5919):2266-2276.doi: 10.1007/s11434-014-0182-0

38.    Chen S., Tao C., Li H., et al. A data processing method for MAPR hydrothermal plume turbidity data and its application in the Precious Stone Mountain hydrothermal field. Acta Oceanologica Sinica. 2014 338):34-43.doi: 10.1007/s13131-014-0406-9

39.    Tao C., Wu T., Jin X. B., ., et al.Petrophysical characteristics of rocks and sulfides from the SWIR hydrothermal field.Acta 0ceanol.Sin, 2013,3212:118-125.doi:10.1007s13131-013-0367-4

40.    Tao C., Xiong W., Xi Z., et al. TEM investigations of South Atlantic Ridge 13.2°S hydrothermal area. Acta Oceanologica Sinica. 2013 3212):68-74.doi: 10.1007/s13131-013-0392-3

41.    Tao C., Wu T., Jin X., et al. Petrophysical characteristics of rocks and sulfides from the SWIR hydrothermal field. Acta Oceanologica Sinica. 2013 3212):118-125.doi: 10.1007/s13131-013-0367-4

42.    Tao C., Lin J., Guo S., et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology. 2012 401):47-50.doi: 10.1130/G32389.1

43.    Tao C., Li S., Song C., et al. Niao Chao Hill—Study of supporting techniques for China’s first international undersea feature name. Science China Earth Sciences. 2012 5510):1588-1591.doi: 10.1007/s11430-012-4477-1

44.    Tao C., Li H., Huang W., et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin. 2011 5626):2828-2838.doi: 10.1007/s11434-011-4619-4

45.    Tao C., Li H., Yang Y., et al. Two hydrothermal fields found on the Southern Mid-Atlantic Ridge. Science China Earth Sciences. 2011 549):1302-1303.doi: 10.1007/s11430-011-4260-8

46.    Tao C., Li H . X. Deng X., et al. Low Sound Velocity Sediments Analyses and the Acoustic Model of Seabed Sediment 2016

47.    Tao C., Li H . X. Deng X., et al. Study of a geo-acoustic model of gas-bearing sediment and its application in sediment with low acoustic veloctiy. China Ocean Engineering. 2010 242):381-390.doi: 10.1080/14634988.2010.543383

48.    Tao C., Deng X., Li X., et al. Development of in-situ Marine Sediment Geo-Acoustic Measurement System with Real-Time and Multi Frequencies (the Second Generation). CHINA OCEAN ENGINEERING. 2009 234):1-10.doi: 10.1016/j.oceaneng.2008.10.004

专著:

1.      陶春辉,陈建平,廖时理,等. 洋中脊多金属硫化物成矿预测与资源量估算方法. 北京: 科学出版社, 2019: 211.

2.      陶春辉等,洋中脊多金属硫化物勘查方法与技术. 北京: 科学出版社, 2018.11: 316.

3.      陶春辉,王东,金翔龙等, 海底沉积物声学特性和原位测试技术, 海洋出版社, 2006

专利:

1.        陶春辉;郭志馗,一种海底热液流体循环三维仿真方法,2020.05.11202010392629

2.        方美芬;陶春辉;周建平,一种水下全光谱光源照明装置,2019.12.31201922477981

3.        张国堙;徐巍军;金肖兵;蔡巍;顾春华;周建平;陶春辉,一种深海拖曳缆系单点传感器空间运动轨迹获取装置,2019.12.10201922000000

4.        柳云龙;陶春辉;丘磊;蔡巍;张国堙;周建平;梁锦,一种基于声学测距和多波束地形的OBS精确定位方法,2019.11.14201911110946

5.        沈洪垒;陶春辉;王汉闯;周建平;丘磊;柳云龙,一种通过优化气枪空间分布减小空气枪震源子波方向性的方法,2019.09.09201910857817

6.        陶春辉;郭志馗,一种基于空间域的重磁位场解析延拓方法,2019.08.01201911000000

7.        陶春辉;朱忠民;王文义;沈金松;邓显明;周建平;李泽;金小兵,一种搭载瞬变电磁双拖体的海底自然电位观测方式及电干扰校正方法,2019.07.02201910589392

8.        蔡巍;王渊;吴世军;张国堙;陶春辉;徐巍军;周红伟;邓显明;周建平,一种用于自主水下机器人的热液羽状流自主识别采样装置,2019.05.13201921000000

9.        王汉闯;陶春辉;沈洪垒;周建平;丘磊;柳云龙;徐巍军,一种随机接收的垂直电缆地震数据采集系统,2019.02.26201920000000

10.    王汉闯;陶春辉;沈洪垒;周建平;丘磊;柳云龙;徐巍军    一种近底拖曳式随机接收电缆地震数据采集系统      2019.02.20   201920216621

11.    陶春辉;沈洪垒;王汉闯;周建平;丘磊;柳云龙,一种基于移动平台搭载的海洋地震探测系统,2019.01.30201920166437

12.    沈洪垒;陶春辉;王汉闯;周建平;丘磊;柳云龙,一种基于拖缆搭载的海洋地震探测系统,2019.01.30201920000000

13.    李红星;倪然;陶春辉;刘财;韩立国;徐文斌 ,一种反射地震记录频变速度分析方法,2018.12.18201811546192

14.    蔡巍;邓显明;陶春辉;张国堙;张金辉;王渊;吴涛;周红伟;周建平;徐巍军;顾春华,一种自主水下机器人和地质取样设备的并行作业方法,2018.12.12201812000000

15.    陶春辉;周建平;张金辉;周红伟;徐巍军;蔡巍;王渊;张国堙;邓显明;顾春华;何拥华     自容式海底热液羽状流原位探测装置,2018.11.19201821906666

16.    沈洪垒;陶春辉;王汉闯;周建平;丘磊;柳云龙,基于虚拟和真实深度组合的海上宽频带气枪震源,2018.11.15201811000000

17.    沈洪垒;陶春辉;王汉闯;丘磊;周建平,一种变频式海洋高压空气枪震源,2018.10.18201822000000

18.    沈洪垒;陶春辉;周建平;丘磊;王汉闯;柳云龙,一种基于多种震源采集数据的联合反褶积方法,2018.10.18201811216259

19.    张金辉;陶春辉;吴涛;徐巍军,用于深海装备作业的通信装置,2018.10.09201821635968

20.    陶春辉;刘露诗;潘东雷;廖时理;邓显明;王渊;周建平;顾春华;王汉闯;李泽,一种基于地形分析的海底硫化物找矿方法,2018.08.28201811000000

21.    王汉闯;陶春辉;周建平;丘磊;王渊;柳云龙;徐魏军;潘东雷,一种锚定式深海硫化物地震勘探数据接收装置,2018.08.02201821000000

22.    陶春辉;周红伟;徐巍军;蔡巍;王渊;邓显明;顾春华;何拥华;周建平;张金辉,支撑装置及基于传感器的探测装置,2018.06.04201821000000

23.    陶春辉;张国堙;周建平;徐巍军;蔡巍;邓显明;张金辉;金肖兵,一种海底沉积物声学与物理参数原位同步测量装置,2017.12.25201722000000

24.    蔡巍;张国堙;陶春辉;顾春华;徐巍军;周红伟;邓显明;周建平,一种用于赤潮早期预警的在线监测系统,2017.12.08201722000000

25.    陶春辉;张国堙;王渊;蔡巍;丘磊;徐巍军;周红伟;邓显明;周建平;张金辉;何拥华,一种探测深海热液羽状流的自动升降装置,2017.10.10201721301217

26.    吴涛;陶春辉;张金辉;张国堙,一种具有磁力仪延伸杆的水下机器人及磁力仪磁干扰的海上校正方法,2017.08.24201711000000

27.    张国堙;陶春辉;徐巍军;王渊;蔡巍;丘磊;邓显明;周建平,一种海底热液羽状流声学成像模拟装置与方法,2017.08.24201711000000

28.    陶春辉;程永寿,一种海底热液硫化物资源评价方法,2017.08.08 201711000000

29.    陶春辉;张国堙;周建平;邓显明;蔡巍;徐巍军;金肖兵;吴震宇;刘宜胜,一种海底沉积物声学原位测量与同步取样装置及方法,2016.12.21201611000000

30.    张国堙;蔡巍;陶春辉;邓显明;丘磊;周建平;张金辉;何拥华;顾春华,一种深海声波采集装置,2016.12.21201621409795

31.    陶春辉;张国堙;周建平;邓显明;蔡巍;徐巍军;金肖兵;吴震宇;刘宜胜,一种海底沉积物声学原位测量与同步取样装置,2016.12.21201621409252

32.    周建平;陶春辉;张国堙;邓显明,用于实现海底沉积物深度测量的深度探测装置,2016.10.09201621000000

33.    蔡巍;孙启勇;张国堙;周建平;周红伟;王平;陶春辉,探测海底热液的数据自容式丝状三电极传感系统,2016.08.15201610672583

34.    张国堙;陶春辉;蔡巍;张恺;邓显明;周建平 基于海底地形的近底定高拖曳导航系统及方法,2016.08.04201610644296.X

35.    张国堙;陶春辉;蔡巍;张恺;邓显明;周建平,一种基于海底地形的近底定高拖曳导航系统,2016.08.04201621000000

36.    周红伟;陶春辉;吴家林;蔡巍;张恺;曾锦锋 ,一种缆用传感器保护机构,2016.05.24201620000000

37.    张金辉;吴涛;陶春辉;吴招才;周建平;张国堙;邓显明,安装于潜器中磁力仪磁干扰的陆上校正方法,2015.10.23201511000000

38.    周建平;陶春辉;邓显明;张国堙;余海波;刘宜胜,一种适合水下机器人操作的把手装置,2015.05.08201510233429.X

39.    陶春辉;邓显明;周建平,一种海底多金属硫化物综合信息快速找矿方法,2013.10.12201310000000

40.    周建平;陶春辉;吴震宇;刘宜胜;邓显明;钱鑫炎;张金辉;张国堙;顾春华;李怀明;何拥华,一种海底地球物理观测装置,2013.08.21201321000000

41.    周建平;陶春辉;邓显明;吴震宇;刘宜胜;钱鑫炎;张金辉;张国堙;顾春华;李怀明;何拥华,一种用于近海底的远程电控释放器机构,2013.07.30201310329117.X

42.    周建平;陶春辉;邓显明;张国堙;张金辉;顾春华;李怀明;何拥华;丘磊;蔡魏,一种柱状样沉积物声速测量方法,2013.04.18201310000000

43.    陶春辉;周建平;王东;邓显明;顾春华;李怀明;何拥华;钱鑫炎;张金辉,一种恒温恒压沉积物声学测试平台,2010.11.10 201011000000

44.    马维林;章胜亮;吕文正;高水土;陈荣华;初凤友;陶春辉,重锤助力机构,2007.04.18200710000000

45.    周利生;张军;夏铁坚;王福林;范进良;沈铁东;刘强;陶春辉;戴琪华,水声超宽带组合声阵与发射的方法及其装置,2004.11.26200410089145.X




 沪ICP备05052060 版权所有©上海交通大学

访问人数: | 开通时间:--

最近更新时间:--