研究领域
- 暂无内容
论文成果 MORE+
- · Analysis on the asymptotic behavior of transonic shocks for steady Euler flows with gravity in a flat nozzle as the gravity vanishes.APPLIED MATHEMATICS LETTERS.2022
- · ON ADMISSIBLE POSITIONS OF TRANSONIC SHOCKS FOR STEADY ISOTHERMAL EULER FLOWS IN A HORIZONTAL FLAT NOZZLE UNDER VERTICAL GRAVITY\ast.SIAM JOURNAL ON MATHEMATICAL ANALYSIS.2022
- · On admissible positions of transonic shocks for steady Euler flows in a 3-D axisymmetric cylindrical nozzle.Journal of Differential Equations.2021
- · UNIQUENESS OF STEADY 1-D SHOCK SOLUTIONS IN A FINITE NOZZLE VIA VANISHING VISCOSITY ARGUMENTS.COMMUNICATIONS ON PURE AND APPLIED ANALYSIS.2021
- · On Admissible Locations of Transonic Shock Fronts for Steady Euler Flows in an Almost Flat Finite Nozzle with Prescribed Receiver Pressure.COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS.2021
- · Persistence of the Steady Normal Shock Structure for the Unsteady Potential Flow.SIAM Journal on Mathematical Analysis.2020
- · On multi-dimensional linear stability of planar shock waves for Chaplygin gases.Applied Mathematics Letters.2020
- · Stability of transonic shocks in steady supersonic flow past multidimensional wedges.Advances in Mathematics.2017
- · The uniqueness of transonic shocks in supersonic flow past a 2-D wedge.Journal of Mathematical Analysis and Applications.2016
- · On local structural stability of one-dimensional shocks in radiation hydrodynamics.Acta Mathematica Scientia.2015
专利
- 暂无内容
著作成果
- 暂无内容
科研项目 MORE+
- · 大型客机结冰的不确定性量化与多尺度空气动力模拟-2025/11/01
- · 偏微分方程分析及其应用-2012/12/01
- · 偏微分方程分析及其应用-2011/12/01
- · 高维Euler方程组管道流激波解的理论研究-2023/12/01
- · 边界层理论及相关主题高级研讨班-2018/12/01
- · 流体力学边界层的数学理论-2021/12/01
- · 流体力学边界层的数学理论(重点项目, 总经费230万)-2021/12/01
- · 非线性偏微分方程与自由边界问题-2018/12/01
- · 流体力学方程组奇性波的理论研究-2018/06/01
- · 关于高维Euler方程组间断解适定性理论的一些研究-2017/12/01